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RETATIONSHIP BETWEEN THE AERODYNAMIC DAMPING DERIVATIVES MEASURED
AS A FUNCTION OF INSTANTANEOUS ANGULAR DISPLACEMENT AND
THE AERODYNAMIC DAMPING DERIVATIVES MEASURED
AS A FUNCTION OF OSCILIATION AMPLITUDE

By Bass Redd, Dennis M. Olsen, and Richsrd 1. Barton
Manned Spacecraft Center

SUMMARY

A method is presented which relates the aerodynamic damping derivatives
as & function of instantaneous angular displacement with the aerodynamic deriv-
atives as a function of oscillation amplitude. Each derivative is expressed
in a power series, and by applying the Kryloff-Bogoliuboff equivalent linear-
ization technique, the solution is obtained by equating like coefficients. It
is assumed that the damping per cycle is small, the demping coefficient is
symmetrical, and the pitching moment is linear. Comparisons with numerical
integration results show no appreciable error.

The effect of a nonlinear pitching moment is considered for a represent-
ative case and is found to be small except when approaching unstable trim.

INTRODUCTION

The aerodynamic pitch damping coefficient can be obtained from wind-tunnel
tests by two general methods. In one method, an example of which is small-
amplitude forced-oscillation tests (ref. l), the aerodynamic pitch damping
coefficient Cm + Cm is measured as a function of instantaneous angular

q a
displacement € Dby forced oscillations of small amplitudes at discreet angles
of attack. In the other method, examples of which are ballistic, free-flight,
or free-oscillation wind-tunnel tests (ref. 2), the average aerodynsmic pitch
damping coefficient Cﬁ + cﬁ is measured as a function of oscillation peak
q a

amplitude eo by determining the change in peak emplitude per cycle.

To be used in current digital trajectory computer programs the aerodynamic
pitch damping coefficient must be expressed as a function of instantaneous
angular displacement rather than oscillation peak amplitude. Since ballistie,



free-flight, and free-oscillation wind-tunnel experiments determine the damping
as a function of oscillation pesk amplitude, a method of expressing these re-
sults as a function of instantaneous angle of attack is needed. It is the
purpose of this paper to develop a method whereby damping as a function of
oscillation amplitude can be expressed as a function of instantaneous angle of
attack. The method has the added capability of determining the damping as a
function of oscillation amplitude when damping as a function of instantaneous
angle of attack is known. This latter property allows an oscillation-amplitude
time history to be constructed without resorting to numerical integration of
the equation of motion.

SYMBOLS
A, A2, Ah’ A6, A8 arbitrary constants in the series expansion of f£(6)
B, B2 arbitrary constants in the cubic series for Cm
c, 02, Ch’ 06, 08 arbitrary constants in the series expansion of f(eo)
C pitching-moment coefficient, Litcling moment
m d, SD
aCm

C —
m, Ao

acm m
Cmq + qu damping in pitch coefficient, SEE + D

2v, av
C- + C_ average damping in pitch coefficient over one full
m m. s s

a a oscillation
D reference length
£(9) viscous damping as a function of 8
f(e ) . . .
0 viscous demping as -a function of BO

I mass moment of inertia
k slope of assumed linear pitching moment
P power per cycle as a function of f(0)
PO power per cycle as a function of f(eo)
a angular pitching velocity
d, dynamic pressure




S reference area

T period

t time

v free-stream velocity

o angle of attack

& rate of change of angle of attack

3] instantaneous angular displacement

eo oscillation peak amplitude

elc limit-cycle amplitude, linear pitching moment
eie limit-cycle amplitude, cubic pitching moment
eut unstable trim amplitude, cubic pitching moment
) angular velocity

) angular acceleration

GN arbitrary angular displacement

W angular frequency, X

T
ANATYSIS

Derivation of Equations

The second-order differentiasl equation of motion for a single-degree-of-
freedom oscillating system with viscous damping proportional to displacement is

16 + £(6)6 + k0 = O (1)

where £(0) is the instantaneous viscous demping and k is the slope of an
assumed linear pitching moment. The function f£(6) corresponds to the damping
coefficient as found in a forced oscillation experiment and, for a vehicle
symmetrical in the pitch plane, can be expressed as

£(8) = A + A262 + AuelL + A666 + A898 + ... (2)



If, instead of small-amplitude oscillations about a fixed mean angle of
attack, the vehiecle had oscillated harmonically about the trim angle with a
large amplitude, the power per cycle would be

T T ,
Pp= [ £(0)6%t = A+ ae®+eaot+neensds.. )% (3)
2 L 6 8
0 0

For a free oscillation, the equation of motion is

6 + f(eo)é + %6 =0 (%)

where f(eo) is the viscous damping as a function of oscillation amplitude.
The function f(@o) corresponds to the average damping coefficient as deter-

mined in a free-oscillation experiment, and for a vehicle symmetrical in the
piteh plane, can be expressed as

2 h 6 8
f(eo) = C + 0,80 + 0,0 + CgO) + Cgby + - (5)

The power per cycle can be written as
T T
22 2 L 6 8 22
= f(90>f 67t -(c + C8G + €85 + CgBp + CoB + )/ 6°at (6)
0

0

Kryloff and Bogoliuboff (ref. 3) have shown that equation (4) is the equivalent
linear differential equation of the nonlinear equation of motion, equation (1).
As in reference 4, where the power per cycle is assumed to be the same over a

given oscillgtion, then
T 2“2 T‘2
/ £(0)6%at = f(eo)f 6at (7)
0

0
Solving for f(eo)

T
f £(6)0%at
Jo
(8)
/Tezdt
0



or its equivalent

fT(A + A292 + AueLL + A666 + A898 + ...)ézdt
N 6 98 + 0

I T
f o%at
0

For almost harmonic motion © can be replaced by

2
¢ + 0290 + Cheo + 0660 + C8
(9)

9 = 90 cos wt (10)

If the damping moment is small, then © will be a slowly varying function
of time during the period T and as a first spproximation can be considered
constant over a cycle. The relation of equation (10) allows a straightforward
integration of equation (9). Integrating and carrying out the indicated divi-
sion

L
0

6 8 1, 2, 1, b 6 8
+ CgO3 + Cgfy = A + TA O + 20,0, + 351:‘*6% + Thahos (11)

Equating like coefficients

2
¢+ 0290 + cue

¢ = N
1
Co = 1A5
1
C, ==
b =8y g (12)

Terms beyond the eighth order were not considered.

If, from a forced-oscillation test, f(e) is known in a power series such
as equation (2), then f(eo) can be determined directly as

o 1. M 5,6, T,8
ot 8% * &% + 128ts% (13)

On the other hand, if f(eo) is known from a free-oscillation test and can be

f(eo) = A+ %Age

expressed in a power series such as equation (5), f(©) can be found directly



as

b 64 6 128 .8

2
= )
£(0) = C + ucee +8C, 0" + ?;066 + —77086 (14)
Since
5 7
Sh
() = 7 (%, * )
o] 6
and (15)
sp°
f(eo> = —5 (qﬁ + C_ )
a a
/
the desired relationship between Cm + Cm and CI_rI + Cﬁ is found.
q & a &

Methods of Application

Determination of Cﬁ + Cﬁ from measured values of Cm + Cm .- If
q e? q &
values of C_ + Cm as a function of angular displacement © have been
a a
measured in small-amplitude forced-oscillation tests, the damping coefficient
can be expressed in a power series

oV 2 i 6 8
¢c +C = <% + Aze + Ahe + A6e + A86 >

mq ma qcoSD2

Then, from equation (13) the damping coefficient as a function of amplitude
of oscillation is

2v 1, 02, 1, b é% 6 7 8
_ = ]
%z * % z <§ * 8% + 3% * g6% * 128%%
o} Q@  QuSD
With this calculated Cﬁ + Cﬁ the oscillation-amplitude time history can be
] &
determined by using the logarithmic decrement relation
2
Bt ot &P
6. =06__ &t (%) o 2t & ( ny ﬁ%,> (16)
0,2 0,1 0,1

If the measured values of Cm + Cm show negative damping at small
q &
amplitudes and positive damping at larger amplitudes, a limit cycle is indicated.




The smplitude of this limit cycle is the amplitude at which the oscillation-

amplitude time history, determined by using equation (16), levels out. The

smplitude of the limit cycle can also be found by solving for the roots of

the power series representation of Cﬁ + Cﬁ . The two real roots, opposite
q a

in sign but equal in magnitude, near trim will be the amplitude of the limit

cyele.

Determination of Cm + Cm. from measured values of Cﬁ + Cﬁ..- If an
q a q Q
oscillation-amplitude time history such as that shown in sketch (a) is obtained
from a free-oscillation test, the damping as a function of oscillation ampli-
tude can be calculated with the following equation:

)
=22 0,2
f(eo) =T log, % 1 (17)
3

© —
PCD
)
T
|

\/ T 27

T ——=

Sketch (a)

Then, f(eo) can be plotted against 90 and expressed in the power series of

equation (5). Damping as a function of angular displacement can be calculated

from equation (14). From equation (15), the damping coefficient as a function
of angular displacement is

¢ +C_ =ﬂ§f(e)
a & q.SD

Numerical Comparisons
The following two theoretical methods have been presented to relate the

pitch damping derivatives as a function of angular displacement with the pitch
damping derivatives as a function of oscillation amplitude:



(1) Determination of C- + C
o} a

(2) Determination of c.+C..
a a

from measured wvalues of Cm + Cm

a Q

from measured values of Cﬁ + Cﬁ

o} Q

In order to ascertain the accuracy of these methods, arbitrary damping deriv-

ative coefficients C + C
m m.
q o
equation of motion
- SD2
0 -
T v

(c + C )
m m.
q a

and numerically integrated.
was used to calculate CITl

q

+ C- .
m.
a

then compared with the theoretical solution to verify method 1.

the validity of method 2, Cm

q

+ C
m.
(o4}

a

The following two cases present
numerical comparisons made to verify
the two methods.

Case A.- The first case is that of
a quadratic with positive damping. The
value of Cm + Cm. was chosen as
q a
-6.55 x 107 6°. The oscillation-
amplitude time history in figure 1 was
obtained by numerical integration of

equation (18); and from the time history, ‘o

Cﬁ + Cﬁ was calculated by using equa-
q Q@
tion (17). The theoretical damping co-

efficient was then determined by using
method 1. The calculated and theoretical
values are compared in figure 2.

Method 2 was used to obtain

C C from the calculated values of
m + m.
q Q
Cﬁ + Qﬁ. of figure 2, and the results
o] a

are compared with the actual value
-6.55 X 100 ® ip figure 3.

8

0 - quDCm 8 =0

0.

were programed in the single-degree-of-freedom

(18)

The oscillation-amplitude time history obtained
The results of these calculations were

To ascertain

was obtained from the calculated values

and then were compared with the input values.

NASA-S-65-3304
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Figure 1. - Oscillation-amplitude time history

for case A-Cmq+ Cm&= -6.55 x 107362
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Case B.- The second case is that of a quadratic with both positive and neg-

-ative damping. The value of C_ + Cm was chosen as 2.0 - 6.55 X 1070 6°
q Qa

Equation (18) was numerically integrated to obtain the oseillation-~-amplitude time

history of figure 4 which shows a limit cycle at 35°. From figure U4, (‘,'I_ﬁ + CITl
&

was calculated by using equation (16), and the results are compared in figure 5

with the theoretical coefficients obtained from method 1. Note that both the

theoretical and computed values show zero damping at 60 = 35°, as would be

expected.

Method 2 was used to obtain Cm + Cm from the calculated values of
q &
C_ + Cm , and the results are compared with the actual coefficient
mq L
2.0 - 6.55 X lO-3 0° in figure 6. Both solutions have damping coefficients of
0 at 6 =17.5° which is exactly one-half the amplitude of the limit cycle.
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Figure 4. - Oscillation-amplitude time history for case B, Cn +C,,.=2-6.55x 103602
q «
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One of the important applications of method 1 is the construction of an
oscillation-amplitude time history when Cm + Cm is known by numerical inte-
a &

gration of equation (16) rather than numerically integrating the entire equation
of motion. First, Qm + Cm- is converted to Cﬁ + Cﬁ by method 1. Then,

o q (6}
by using equation (16), the oscillation time history can be constructed with
small time steps so that both 90 and Cﬁ + Qﬁ are considered to be constant.

This application is illustrated for case B where:

C +C  =2.0-6.55x 1070 6°

By using method 1

_ 1 -3 2
cﬁ +Cm. -2.0-(1;) 6.55 x 107 ©
q a

This is shown in figure 5. Substituting this value in equation (16)

At quD 1 -3 2
6 _o B W ['(E)655X10 e01]
0,2~ 0,1 €

The time step was altered so that 90 changed approximately 1° each step, and

the oscillation-amplitude time history obtained is shown in figure 7. The
small differences between the actual and constructed time histories are sttrib-
uted to the assumption that Cﬁ + Cﬁ is constant over each time step. A

o] a
limit cycle of 35° is also shown in this figure. The amplitude of the limit
cycle can also be found by solving for the roots of Cﬁ + Cﬁ

a
2
quD
Gz *+Cr =% [2 - (11:)6.55 x 10™2 eg} =0
62 _ >

%(6. 55 x 107

= :1:35"

12
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Figure 7. - Oscillation-amplitude time history constructed from given C\ + C_ | case B.
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Effect of a nonlinear pitching moment.- In the development of the theory
in this paper, only linear pitching moments were considered. However, except
for small oscillations, the pitching moment for many vehicles is nonlinear with
amplitude. To determine the usefulness of this theory as applied to the non-
linear pitching moment, the amplitude of a predicted limit cycle was compared
with an actual limit cycle, since this was believed to be the most severe lim-
itation. The nonlinear pitching-moment coefficient was simulated in the single
degree-of-freedom computer program by

- B0 - B6
¢ =38 -3,

which is shown in sketch (b) where unstable trim is denoted as

15



/—\ + /3/32

- /B/8B,

Sketch (b)

The damping coefficient was simulated in the computer program by

C +C =A-p6°
m m. 2
a

as shown in sketch (c)

Sketch (c)

By using the method of this paper, Cr"ﬁ + Cr’ﬁ was found to be

a
A
B > 2
C?.n'l'cr_r_l'—A—Teo
q [e4

1k




as shown in sketch (d) where #2 \/ A/A2 denotes the amplitude of the theo-

retical limit cycle elc' Various values of A were put into the computer

program to vary the amplitude of the actual limit cyecle 9ic from O to the
*

point at which tumbling occurred. The values elc and 910 were nondimen-

sionalized by dividing by eut'

Cq + Cp .
mq Ma

2V/AAy T | T *2 /M .
/ \ (o

Sketch (d)

From figure 8, it can be assumed that the nonlinear pitching moment would
cause no appreciable error in the solution for the amplitude of the limit cycle
S e 5] 8 5]

up to values of 0.7 1c/ e From 0.7 lc/ w0 0.9 1c/eut’ the error

NASA-5-65-3309
Unstable
1.0
/
~
~
8 |- Actunl limit cycle -~
= = == Theoretical limit cycle ~
c
b 2
* 3
6/0y4 =
A4 -
2
1 1 1 | 1 1 i 1 1
0 A .2 3 .4 5 .6 .7 8 9 1.0

elc/eu'

Figure 8. - Comparison of actual limit cycle with theoretical limit cycle.
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increases; and for values above 0.9 elc/eut’ the linear approximation is not

usable since it predicts a limit cyecle when, actually, tumbling occurs.
CONCLUDING REMARKS

The aerodynamic pitch damping coefficient as a function of instantaneous
angular displacement is related with the aerodynamic pitch damping coefficient
as a function of oscillation amplitude by a method in which the Kryloff-
Bogoliuboff equivalent linearization technique is used. DPower series expres-
sions for the functions are developed and the 1ike coefficients of the series
are equated to provide the relationship. It is assumed that the damping per
cycle is small, the damping coefficient is symmetrical, and the pitching moment
is linear. Comparisons with numerical integration results show no appreciable
error. The effect of a nonlinear pitching moment is considered for a repre-
sentative case and is found to be small, except when approaching unstable trim.

Manned Spacecraft Center
National Aeronautics and Space Administration
Houston, Texas, March 3, 1965
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